Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1098457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814444

RESUMO

Introduction: Chagas cardiomyopathy, a disease caused by Trypanosoma cruzi (T. cruzi) infection, is a major contributor to heart failure in Latin America. There are significant gaps in our understanding of the mechanism for infection of human cardiomyocytes, the pathways activated during the acute phase of the disease, and the molecular changes that lead to the progression of cardiomyopathy. Methods: To investigate the effects of T. cruzi on human cardiomyocytes during infection, we infected induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) with the parasite and analyzed cellular, molecular, and metabolic responses at 3 hours, 24 hours, and 48 hours post infection (hpi) using transcriptomics (RNAseq), proteomics (LC-MS), and metabolomics (GC-MS and Seahorse) analyses. Results: Analyses of multiomic data revealed that cardiomyocyte infection caused a rapid increase in genes and proteins related to activation innate and adaptive immune systems and pathways, including alpha and gamma interferons, HIF-1α signaling, and glycolysis. These responses resemble prototypic responses observed in pathogen-activated immune cells. Infection also caused an activation of glycolysis that was dependent on HIF-1α signaling. Using gene editing and pharmacological inhibitors, we found that T. cruzi uptake was mediated in part by the glucose-facilitated transporter GLUT4 and that the attenuation of glycolysis, HIF-1α activation, or GLUT4 expression decreased T. cruzi infection. In contrast, pre-activation of pro-inflammatory immune responses with LPS resulted in increased infection rates. Conclusion: These findings suggest that T. cruzi exploits a HIF-1α-dependent, cardiomyocyte-intrinsic stress-response activation of glycolysis to promote intracellular infection and replication. These chronic immuno-metabolic responses by cardiomyocytes promote dysfunction, cell death, and the emergence of cardiomyopathy.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Miócitos Cardíacos/metabolismo , Doença de Chagas/parasitologia , Imunidade Inata
2.
PeerJ ; 9: e12262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707939

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can infect several organs, especially impacting respiratory capacity. Among the extrapulmonary manifestations of COVID-19 is myocardial injury, which is associated with a high risk of mortality. Myocardial injury, caused directly or indirectly by SARS-CoV-2 infection, can be triggered by inflammatory processes that lead to damage to the heart tissue. Since one of the hallmarks of severe COVID-19 is the "cytokine storm", strategies to control inflammation caused by SARS-CoV-2 infection have been considered. Cannabinoids are known to have anti-inflammatory properties by negatively modulating the release of pro-inflammatory cytokines. Herein, we investigated the effects of the cannabinoid agonist WIN 55,212-2 (WIN) in human iPSC-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2. WIN did not modify angiotensin-converting enzyme II protein levels, nor reduced viral infection and replication in hiPSC-CMs. On the other hand, WIN reduced the levels of interleukins six, eight, 18 and tumor necrosis factor-alpha (TNF-α) released by infected cells, and attenuated cytotoxic damage measured by the release of lactate dehydrogenase (LDH). Our findings suggest that cannabinoids should be further explored as a complementary therapeutic tool for reducing inflammation in COVID-19 patients.

3.
Stem Cell Res ; 54: 102436, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34186311

RESUMO

Coronavirus disease 2019 (COVID-19) was initially described as a viral infection of the respiratory tract. It is now known, however, that several other organs are affected, including the brain. Neurological manifestations such as stroke, encephalitis, and psychiatric conditions have been reported in COVID-19 patients, but the neurotropic potential of the virus is still debated. Herein, we sought to investigate SARS-CoV-2 infection in human neural cells. We demonstrated that SARS-CoV-2 infection of neural tissue is non-permissive, however, it can elicit inflammatory response and cell damage. These findings add to the hypothesis that most of the neural damage caused by SARS-CoV-2 infection is due to a systemic inflammation leading to indirect harmful effects on the central nervous system despite the absence of local viral replication.


Assuntos
COVID-19 , SARS-CoV-2 , Encéfalo , Humanos , Inflamação
4.
J Pers Med ; 11(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064343

RESUMO

The scant ability of cardiomyocytes to proliferate makes heart regeneration one of the biggest challenges of science. Current therapies do not contemplate heart re-muscularization. In this scenario, stem cell-based approaches have been proposed to overcome this lack of regeneration. We hypothesize that early-stage hiPSC-derived cardiomyocytes (hiPSC-CMs) could enhance the cardiac function of rats after myocardial infarction (MI). Animals were subjected to the permanent occlusion of the left ventricle (LV) anterior descending coronary artery (LAD). Seven days after MI, early-stage hiPSC-CMs were injected intramyocardially. Rats were subjected to echocardiography pre-and post-treatment. Thirty days after the injections were administered, treated rats displayed 6.2% human cardiac grafts, which were characterized molecularly. Left ventricle ejection fraction (LVEF) was improved by 7.8% in cell-injected rats, while placebo controls showed an 18.2% deterioration. Additionally, cell-treated rats displayed a 92% and 56% increase in radial and circumferential strains, respectively. Human cardiac grafts maturate in situ, preserving proliferation with 10% Ki67 and 3% PHH3 positive nuclei. Grafts were perfused by host vasculature with no evidence for immune rejection nor ectopic tissue formations. Our findings support the use of early-stage hiPSC-CMs as an alternative therapy to treat MI. The next steps of preclinical development include efficacy studies in large animals on the path to clinical-grade regenerative therapy targeting human patients.

5.
Cell Rep Methods ; 1(4): 100044, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35475144

RESUMO

Cell membrane deformation is an important feature that occurs during many physiological processes, and its study has been put to good use to investigate cardiomyocyte function. Several methods have been developed to extract information on cardiomyocyte contractility. However, no existing computational framework has provided, in a single platform, a straightforward approach to acquire, process, and quantify this type of cellular dynamics. For this reason, we develop CONTRACTIONWAVE, high-performance software written in Python programming language that allows the user to process large data image files and obtain contractility parameters by analyzing optical flow from images obtained with videomicroscopy. The software was validated by using neonatal, adult-, and human-induced pluripotent stem-cell-derived cardiomyocytes, treated or not with drugs known to affect contractility. Results presented indicate that CONTRACTIONWAVE is an excellent tool for examining changes to cardiac cellular contractility in animal models of disease and for pharmacological and toxicology screening during drug discovery.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fluxo Óptico , Animais , Recém-Nascido , Humanos , Software , Miócitos Cardíacos , Células Cultivadas
6.
PeerJ ; 9: e12595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35036128

RESUMO

SARS-CoV-2 infects cardiac cells and causes heart dysfunction. Conditions such as myocarditis and arrhythmia have been reported in COVID-19 patients. The Sigma-1 receptor (S1R) is a ubiquitously expressed chaperone that plays a central role in cardiomyocyte function. S1R has been proposed as a therapeutic target because it may affect SARS-CoV-2 replication; however, the impact of the inhibition of S1R in human cardiomyocytes remains to be described. In this study, we investigated the consequences of S1R inhibition in iPSC-derived human cardiomyocytes (hiPSC-CM). SARS-CoV-2 infection in hiPSC-CM was productive and reduced cell survival. S1R inhibition decreased both the number of infected cells and viral particles after 48 hours. S1R inhibition also prevented the release of pro-inflammatory cytokines and cell death. Although the S1R antagonist NE-100 triggered those protective effects, it compromised cytoskeleton integrity by downregulating the expression of structural-related genes and reducing beating frequency. Our findings suggest that the detrimental effects of S1R inhibition in human cardiomyocytes' integrity may abrogate its therapeutic potential against COVID and should be carefully considered.

7.
bioRxiv ; 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-33052345

RESUMO

Coronavirus disease 2019 (COVID-19) was initially described as a viral infection of the respiratory tract. It is now known, however, that several other organs are affected, including the brain. Neurological manifestations such as stroke, encephalitis, and psychiatric conditions have been reported in COVID-19 patients, but the neurotropic potential of the virus is still debated. Herein, we sought to investigate SARS-CoV-2 infection in human neural cells. We demonstrated that SARS-CoV-2 infection of neural tissue is non-permissive, however, it can elicit inflammatory response and cell damage. These findings add to the hypothesis that most of the neural damage caused by SARS-CoV-2 infection is due to a systemic inflammation leading to indirect harmful effects on the central nervous system despite the absence of local viral replication.

9.
SAGE Open Med ; 8: 2050312120966456, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33149912

RESUMO

OBJECTIVES: To establish a straightforward single-cell passaging cultivation method that enables high-quality maintenance of human induced pluripotent stem cells without the appearance of karyotypic abnormalities or loss of pluripotency. METHODS: Cells were kept in culture for over 50 passages, following a structured chronogram of passage and monitoring cell growth by population doubling time calculation and cell confluence. Standard procedures for human induced pluripotent stem cells monitoring as embryonic body formation, karyotyping and pluripotency markers expression were evaluated in order to assess the cellular state in long-term culture. Cells that underwent these tests were then subjected to differentiation into keratinocytes, cardiomyocytes and definitive endoderm to evaluate its differentiation capacity. RESULTS: Human induced pluripotent stem cells clones maintained its pluripotent capability as well as chromosomal integrity and were able to generate derivatives from the three germ layers at high passages by embryoid body formation and high-efficient direct differentiation into keratinocytes, cardiomyocytes and definitive endoderm. CONCLUSIONS: Our findings support the routine of human induced pluripotent stem cells single-cell passaging as a reliable procedure even after long-term cultivation, providing healthy human induced pluripotent stem cells to be used in drug discovery, toxicity, and disease modeling as well as for therapeutic approaches.

10.
Int J Sports Physiol Perform ; 10(5): 636-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25569611

RESUMO

AIM: To study the relationship between the ACTN3 R577X polymorphism and oxygen uptake (VO2) before and after exercise training. METHODS: Police recruits (N=206, 25±4 y) with RR (n=75), RX (n=97), and XX (n=33) genotypes were selected. After baseline measures, they underwent 18 wk of running endurance training. Peak VO2 was obtained by cardiopulmonary exercise testing. RESULTS: Baseline body weight was not different among genotypes. At baseline, XX individuals displayed higher VO2 at anaerobic threshold, respiratory compensation point, and exercise peak than did RR individuals (P<.003). Endurance training significantly increased VO2 at anaerobic threshold, respiratory compensation point, and exercise peak (P<2×10(-6)), but the differences between XX and RR were no longer observed. Only relative peak VO2 exercise remained higher in XX than in RR genotype (P=.04). In contrast, the increase in relative peak VO2 was greater in RR than in XX individuals (12% vs 6%; P=.02). CONCLUSION: ACTN3 R577X polymorphism is associated with VO2. XX individuals have greater aerobic capacity. Endurance training eliminates differences in peak VO2 between XX and RR individuals. These findings suggest a ceiling-effect phenomenon, and, perhaps, trained individuals may not constitute an adequate population to explain associations between phenotypic variability and gene variations.


Assuntos
Actinina/genética , Exercício Físico/fisiologia , Variação Genética , Resistência Física/fisiologia , Polimorfismo de Nucleotídeo Único , Adulto , Genótipo , Voluntários Saudáveis , Humanos , Masculino , Fenótipo , Adulto Jovem
11.
J Negat Results Biomed ; 11: 4, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22236651

RESUMO

BACKGROUND: Calstabins 1 and 2 bind to Ryanodine receptors regulating muscle excitation-contraction coupling. Mutations in Ryanodine receptors affecting their interaction with calstabins lead to different cardiac pathologies. Animal studies suggest the involvement of calstabins with dilated cardiomyopathy. RESULTS: We tested the hypothesis that calstabins mutations may cause dilated cardiomyopathy in humans screening 186 patients with idiopathic dilated cardiomyopathy for genetic alterations in calstabins 1 and 2 genes (FKBP12 and FKBP12.6). No missense variant was found. Five no-coding variations were found but not related to the disease. CONCLUSIONS: These data corroborate other studies suggesting that mutations in FKBP12 and FKBP12.6 genes are not commonly related to cardiac diseases.


Assuntos
Cardiomiopatia Dilatada/genética , Testes Genéticos , Mutação/genética , Proteínas de Ligação a Tacrolimo/genética , Adulto , Alelos , Estudos de Coortes , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética
12.
Am Heart J ; 162(6): 1088-1095.e1, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22137083

RESUMO

BACKGROUND: Phospholamban (PLN) is a crucial Ca(2+) cycling protein and a primary mediator of the ß-adrenergic effects resulting in enhanced cardiac output. Mutations in the gene encoding PLN have been associated with idiopathic dilated cardiomyopathy; however, no systematic search for PLN mutations in heart failure has been conducted. METHODS: We screened a cohort of 1,014 Brazilian patients with heart failure for mutations in the PLN gene. Molecular modeling studies of the mutations found were developed. Different disease etiologies were present in our sample: idiopathic, ischemic, Chagas, valvular, hypertensive, and others. RESULTS: We identified 4 unrelated patients with PLN mutations (prevalence of 0.4%), 3 of them in the same amino acid residue (R9). Two patients presented a G-T missense mutation at the G26 nucleotide, which encodes an Arg-Leu substitution at codon 9 (R9L). One patient presented a G-A missense mutation at the same nucleotide, which encodes an Arg-His substitution at codon 9 (R9H). The fourth affected patient presented a T-G nonsense mutation at the nucleotide 116, substituting a termination codon for Leu-39 (L39stop). Molecular modeling studies suggested that R9L and R9H mutations might affect the region involved in protein kinase A docking and probably affect the mechanism modulating the release of phosphorylated PLN from the substrate binding site of protein kinase A. CONCLUSIONS: Mutations in the PLN gene are a rare cause of heart failure, present almost exclusively in patients with dilated cardiomyopathy etiology. The Arg9 and Leu39 residues are the leading location of mutations described at this locus to date. Despite the few mutated residues described to date, the clinical spectrum of presentation appears to vary considerably.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Insuficiência Cardíaca/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...